References

- Angelova, O., Macíček, J. & Dryanska, V. (1993). Acta Cryst. C49, 1813-1818.
- Barluenda, J., Aznar, F., Fustero, S. & Tomas, M. (1990). Pure Appl. Chem. 62, 1957-1966.
- Barluenda, J., Carlon, R. P., Pelaez, E., Joglar, J. & Lopez Ortiz, F. (1992). *Tetrahedron*, pp. 9745-9752.
- Barluenda, J., Joglar, J., Gonzalez, F. J. & Fustero, S. (1990). Synlett, pp. 129-138.
- Boger, D. L. & Weinreb, S. (1987). Hetero Diels-Alder Methodology in Organic Synthesis. New York: Academic Press.
- Dryanska, V. (1990). Synth. Commun. 20, 1055-1061.
- Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Maciček, J. (1992). KAPPA. Unpublished.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Comment

2-Aza-1,3-dienes (I) have attracted considerable attention in recent years because of their application in the synthesis

of heterocyclic compounds (Boger & Weinreb, 1987; Barluenda, Joglar, Gonzalez & Fustero, 1990; Barluenda, Aznar, Fustero & Tomas, 1990; Barluenda, Carlon, Pelaez, Joglar & Lopez Ortiz, 1992). Following our interest in the synthesis (Dryanska, 1990), chemistry (Dryanska, 1992) and structure (Angelova, Macíček & Dryanska, 1993; Macíček, Angelova & Dryanska, 1993) of functionalized 2-aza-1,3-butadienes, we present here the structural data for the title compound.

Acta Cryst. (1993). C49, 1821-1823

Structures of 1,1-Diphenyl-2-aza-1,3butadienes. III. 3-Cyano-4-(4-cyanophenyl)-1,1-diphenyl-2-aza-1,3-butadiene

OLYANA ANGELOVA AND JOSEF MACÍČEK*

Bulgarian Academy of Sciences, Institute of Applied Mineralogy, Rakovski str. 92, 1000 Sofia, Bulgaria

VENETA DRYANSKA

Chemistry Department, Sofia University, J. Baucher str. 1, 1126 Sofia, Bulgaria

(Received 4 February 1993; accepted 25 March 1993)

Abstract

The title structure, 4CNPD [3-(4-cyanophenyl)-2-(diphenylmethyleneamino)propenonitrile], consists of discrete Z diastereomeric molecules packed by van der Waals forces. The azabutadiene fragment, C1=N1-C2=C3, is twisted around the central single bond at 130.1 (7)°. The non-substituted phenyl rings are tilted with respect to the N1=C1(C1a)-C1b plane at 26.6 (2) and 55.8 (3)°. The dihedral angle between these rings is 73.7 (2)°. The cyano-substituted phenyl ring is almost coplanar with the N1-C2(C4)=C3-C1c plane. The phenyl rings are not plane-to-plane coupled. There are no intermolecular contacts between non-H atoms shorter than 3.3 Å.

Fig. 1. ORTEP (Johnson, 1976) drawing of the 4CNPD molecule with the atom-numbering scheme and 30% probability thermal ellipsoids. H-atom spheres are arbitrarily reduced.

Fig. 2. Stereoscopic view of the molecular packing.

Experimental

Crystal data $C_{23}H_{15}N_3$ $M_r = 333.39$

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1993

а

Monoclinic $P2_1/c$ a = 10.591 (1) Å b = 9.724 (1) Å c = 18.324 (3) Å $\beta = 106.26$ (1)° V = 1811.8 (7) Å ³ Z = 4 $D_x = 1.222$ Mg m ⁻³	Cell parameters from 22 reflections $\theta = 17.98-19.14^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 292 K Prismatic $0.23 \times 0.23 \times 0.20 \text{ mm}$ Yellow	C1c C2c C3c C4c C5c C5c C6c N1-C1 N1-C2 N2-C4 N3-C5 C1-C1a	0.0899 (5) -0.0038 (6) 0.0141 (6) 0.1249 (6) 0.2025 (5) Table 2.	0.4902 0.5925 0.7211 0.7506 0.6508 0.5227 <i>Geometric</i> 1.285 (7) 1.402 (8) 1.145 (9) 1.148 (9) 1.483 (9)	(7) 0.1117 (3) (7) 0.1049 (4) (7) 0.0786 (4) (7) 0.0571 (3) (7) 0.0623 (3) (7) 0.0898 (3) parameters (Å, °) C1-C1b C2-C3 C2-C4 C3-C1c C5-C4c	0.048 (2) 0.059 (2) 0.067 (2) 0.051 (2) 0.057 (2) 0.053 (2) 1.482 (9) 1.336 (9) 1.46 (1) 1.465 (9) 1.44 (1)
Data collection Enraf-Nonius CAD-4 diffractometer Continuous-scan profiles Absorption correction: none	$R_{int} = 0.018$ $\theta_{max} = 26^{\circ}$ $h = 0 \rightarrow 13$ $k = 0 \rightarrow 11$ $l = -22 \rightarrow 21$	C1-N1-C N1-C1-C N1-C1-C C1a-C1-C N1-C2-C C2-N1-C C2-N1-C	C2 C1a C1b C1b C3 C1—C1a C1—C1a C1—C1b	121.0 (5) 116.8 (5) 125.4 (6) 117.8 (5) 125.0 (6) 173.5 (5) -5.3 (9)	$\begin{array}{c} N1 - C2 - C4 \\ C3 - C2 - C4 \\ C2 - C3 - C1c \\ N2 - C4 - C2 \\ N3 - C5 - C4c \\ N1 - C1 - C1b - C2b \\ N1 - C2 - C3 - C1c \end{array}$	116.1 (5) 118.6 (6) 127.9 (6) 178.6 (7) 179.2 (7) 122.8 (7) -6 (1)
3736 measured reflections 3541 independent reflections 958 observed reflections U> 2.57(D)	3 standard reflections frequency: 120 min intensity variation: 1.3%	C1-N1-C C1-N1-C N1-C1-C 3-Cyano-	C2—C3 C2—C4 C1 <i>a</i> —C2a -4-(4-cyano	130.1 (7) -56.1 (8) -24.4 (8) phenyl)-1,1	C4-C2-C3-C1c C2-C3-C1c-C2c -diphenyl-2-aza-1,3-1	– 179.8 (6) – 173.1 (6) butadiene

 $[I > 2.5\sigma(I)]$

Refinement

$w = 1/[\sigma^2(F) + (0.026F)^2]$
$(\Delta/\sigma)_{\rm max} = 0.030$
$\Delta \rho_{\rm max} = 0.451 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
Atomic scattering factors
from SDP/PDP (Enraf-
Nonius, 1985)

Data collection: CAD-4 software (Enraf-Nonius, 1988). Data reduction: SDP/PDP (Enraf-Nonius, 1985). Program(s) used to solve structure: MULTAN11/82 (Main et al., 1982). Program(s) used to refine structure: SDP/PDP. Molecular graphics: OR-TEPII (Johnson, 1976). Software used to prepare material for publication: KAPPA (Maciček, 1992).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

 $U_{eq} = \frac{1}{2} \sum_{i} \sum_{i} U_{ii} a_{i}^{*} a_{i}^{*} \mathbf{a}_{i} \mathbf{a}_{i},$

	•4	3	., .,	
	x	у	z	$U_{\rm eq}$
N1	0.2675 (4)	0.2385 (5)	0.1469 (3)	0.046 (2)
N2	0.0588 (5)	0.0279 (6)	0.2110 (3)	0.084 (2)
N3	0.1700 (5)	0.9913 (6)	0.0102 (3)	0.074 (2)
C1	0.3694 (6)	0.2021 (6)	0.2000 (3)	0.041 (2)
C2	0.1438 (5)	0.2489 (7)	0.1602 (3)	0.052 (2)
C3	0.0634 (6)	0.3572 (7)	0.1420 (3)	0.050 (2)
C4	0.0964 (6)	0.1259 (7)	0.1894 (4)	0.059 (2)
C5	0.1500 (6)	0.8847 (7)	0.0315 (4)	0.057 (2)
Cla	0.4923 (5)	0.1795 (6)	0.1781 (3)	0.039 (2)
C2a	0.4874 (5)	0.1463 (6)	0.1038 (3)	0.045 (2)
C3a	0.6014 (6)	0.1306 (7)	0.0823 (4)	0.056 (2)
C4a	0.7243 (6)	0.1494 (7)	0.1341 (3)	0.061 (2)
C5a	0.7295 (6)	0.1823 (7)	0.2085 (4)	0.065 (3)
C6a	0.6164 (6)	0.1976 (6)	0.2303 (4)	0.053 (2)
C1 <i>b</i>	0.3731 (6)	0.1787 (6)	0.2806 (3)	0.043 (2)
C2b	0.4123 (6)	0.0557 (7)	0.3166 (3)	0.056 (2)
C3b	0.4061 (6)	0.0344 (7)	0.3905 (4)	0.066 (3)
C4b	0.3645 (6)	0.1370 (7)	0.4290.(4)	0.067 (3)
C5b	0.3283 (6)	0.2616 (8)	0.3951 (3)	0.061 (2)
C6b	0.3304 (6)	0.2840 (7)	0.3209 (3)	0.051 (2)

References

N 12.76 (12.60)%.

Applied Mineralogy.

2HU, England. [CIF reference: KA1037]

Angelova, O., Maciček, J. & Dryanska, V. (1993). Acta Cryst. C49, 1813-1818.

was prepared according to a literature method (Dryanska, 1990) from N-diphenylmethyleneaminoacetonitrile and 4-cyanobenzaldehyde. M.p. 388-389 K (from ethanol); ¹H NMR (80 MHz,

CDCl₃): δ 6.56 (s, 1H), 7.00-7.90 (m, 14H, aromatic H); elemental analysis, found (calc.): C 83.09 (82.86), H 4.60 (4.54),

This work has been stimulated by the participation of JM and OA in a Grant-in-Aid Project between the International Centre for Diffraction Data and the Institute of

Lists of structure factors, anisotropic thermal parameters, H-atom coor-

dinates and complete geometry have been deposited with the British Li-

brary Document Supply Centre as Supplementary Publication No. SUP

71220 (23 pp.). Copies may be obtained through The Technical Editor,

International Union of Crystallography, 5 Abbey Square, Chester CH1

- Barluenda, J., Aznar, F., Fustero, S. & Tomas, M. (1990). Pure Appl. Chem. 62, 1957-1966.
- Barluenda, J., Carlon, R. P., Pelaez, E., Joglar, J. & Lopez Ortiz, F. (1992). Tetrahedron, pp. 9745-9752.
- Barluenda, J., Joglar, J., Gonzalez, F. J. & Fustero, S. (1990). Synlett, pp. 129-138.
- Boger, D. L. & Weinreb, S. (1987). Hetero Diels-Alder Methodology in Organic Synthesis. New York: Academic Press.
- Dryanska, V. (1990). Synth. Commun. 20, 1055-1061.
- Dryanska, V. (1992). Heterocycles, 33, 649-656.
- Enraf-Nonius (1985). Structure Determination Package. SDP/PDP User's Guide. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Macíček, J. (1992). KAPPA. Unpublished.

Macíček, J., Angelova, O. & Dryanska, V. (1993). Acta Cryst. C49, 1818-1821.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1993). C49, 1823-1824

Structure of a 2-Acylindan-1-one

J. GABRIEL GARCIA* AND JOEL D. ENAS

Lawrence Berkeley Laboratory, UC-Berkeley, Berkeley, California 94720, USA

FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 12 November 1992; accepted 22 March 1993)

Abstract

2-(1-Hydroxyethylidene)indan-1-one exists as the enol form and is nearly planar with a maximum deviation from the least-squares plane of all non-H atoms of 0.045 (2) Å. The molecule has a Z configuration about the enol double bond. The hydroxyl H atom forms an intramolecular hydrogen bond to the carbonyl O atom, having an O···O distance of 2.610 (2) Å and an angle about the H atom of 150 (2)°. The C(==O)-C==C-O torsion angle about the enol double bond has a magnitude of 1.9 (2)°. The C==O and C==C distances are 1.257 (2) and 1.359 (2) Å, respectively.

Comment

The synthesis of some derivatives of atipamezol (Garcia & Enas, 1992), required in our laboratory, involved the preparation of (Z)-2-acetylindan-1-one as an intermediate. It was prepared by condensing phthalaldehyde with acetone in aqueous potassium hydroxide (Thiele & Falk, 1906). Bright vellow crystals were grown by slow evaporation from an ethanol-tetrahydrofuran mixture (1:2); m.p. 337-340 K. Studies performed by Forsén, Merényi & Nilsson (1964) suggested that 2-acylindan-1,3-diones exist exclusively in the enol form, which had been partially confirmed by the X-ray diffraction study of Csöregh & Norrestam (1976). A more precise study by Korp, Bernal & Lemke (1980) confirmed the enol form with an intramolecular hydrogen bond, H.O. 1.56 (5) Å. This result is similar to that found for

(Z)-2-acetylindan-1-one; $H \cdots O$ 1.69 (2) Å. The occurrence of the title compound in the enol form agrees with similar results for the parent compounds 2-pivaloylindan-1,3-dione and 2-acetylindan-1,3-dione (Korp, Bernal & Lemke, 1980). Structural data for 2-pivaloylindan-1,3-dione and 2-acetylindan-1,3-dione (Korp, Bernal & Lemke, 1980) are in agreement with those of the title compound. The configuration at the C9=C10 double bond has been determined to be Z according to the Cahn-Ingold-Prelog convention (Cahn, Ingold & Prelog, 1956).

Fig. 1. ORTEP drawing (Johnson, 1965) of the molecule, representing heavy atoms as 40% probability ellipsoids and H atoms as circles of arbitrary radii.

Experimental

Crvstal data

$C_{11}H_{10}O_2$	Mo $K\alpha$ radiation
$M_r = 174.2$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/n$	reflections
a = 7.2980 (3) Å	$\theta = 10-12^{\circ}$
b = 16.0475(8) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 7.9701 (3) Å	T = 298 K
$\beta = 108.289 (4)^{\circ}$	Needle fragment
$V = 886.3 (2) Å^3$	$0.50 \times 0.37 \times 0.28 \text{ mm}$
Z = 4	Yellow
$D_x = 1.305 \text{ Mg m}^{-3}$	

Data collection

Enraf-Nonius CAD-4	$R_{\rm int} = 0.014$
diffractometer	$\theta_{\rm max} = 29^{\circ}$
ω -2 θ scans	$h = 0 \rightarrow 9$
Absorption correction:	$k = 0 \rightarrow 21$
none	$l = -10 \rightarrow 10$
2667 measured reflections	3 standard reflections
2347 independent reflections	frequency: 167 min
1490 observed reflections	intensity variation: <2%
$[I > 3\sigma(I)]$	

Refinement

Refinement on F Final R = 0.039wR = 0.047S = 2.2611490 reflections 159 parameters

Acta Crystallographica Section C ISSN 0108-2701 ©1993